Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Interv Aging ; 19: 439-449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496749

RESUMO

Background and Objective: Timely recognition of risk factors for early progression in older adult patients with COVID-19 is of great significance to the following clinical management. This study aims to analyze the risk factors and create a nomogram for early progression in older adult patients with COVID-19 in the Omicron era. Methods: A total of 272 older adults infected with COVID-19 admitted from December 2022 to February 2023 were retrospectively recruited. Risk factor selection was determined using the logistic and the least absolute shrinkage and selection operator (LASSO) regression. A nomogram was then created to predict early progression, followed by the internal validation and assessment of its performance through plotting the receiver operating characteristic (ROC), calibration, and decision curves. Results: A total of 83 (30.5%) older adult patients presented an early progression on chest CT after 3-5 days of admission under standard initiate therapy. Six independent predictive factors were incorporated into the nomogram to predict the early progression, including CRP > 10 mg/L, IL-6 > 6.6 pg/mL, LDH > 245 U/L, CD4+ T-lymphocyte count <400/µL, the Activities of Daily Living (ADL) score ≤40 points, and the Mini Nutritional Assessment Scale-Short Form (MNA-SF) score ≤7 points. The area under the curve (AUC) of the nomogram in discriminating older adult patients who had risk factors in the training and validation cohort was 0.857 (95% CI 0.798, 0.916) and 0.774 (95% CI 0.667, 0.881), respectively. The calibration and decision curves demonstrated a high agreement in the predicted and observed risks, and the acceptable net benefit in predicting the early progression, respectively. Conclusion: We created a nomogram incorporating highly available laboratory data and the Comprehensive Geriatric Assessment (CGA) findings that effectively predict early-stage progression in older adult patients with COVID-19 in the Omicron era.


Assuntos
COVID-19 , Nomogramas , Humanos , Idoso , Atividades Cotidianas , Estudos Retrospectivos , Fatores de Risco , Análise Fatorial
2.
J Agric Food Chem ; 72(7): 3363-3373, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324778

RESUMO

Cyantraniliprole is a novel insecticide recently introduced for rice pest control that may cause potential threats to the red swamp crayfish (Procambarus clarkii) in rice-crayfish coculture systems. In this study, we investigated the acute toxicity of cyantraniliprole against P. clarkii with a LC50 value of 149.77 mg/L (96 h), first. Some abnormal behaviors of P. clarkii treated with 125 mg/L cyantraniliprole, including incunabular hyperexcitability, imbalance, inactivity, and increased excretion were observed. Moreover, it was observed that exposure to 5 mg/L cyantraniliprole for 14 days resulted in histopathological alterations in abdominal muscle, gills, hepatopancreas, and intestines. Furthermore, exposure to 0.05 and 5 mg/L cyantraniliprole induced increased activities of several oxidative stress-related enzymes, which was verified by the upregulation of related genes. Additionally, dysregulation of the intestinal microbiota was determined via 16S rRNA sequencing. These results will provide the basis for the utilization of cyantraniliprole in the fields of rice-crayfish integrated system.


Assuntos
Microbioma Gastrointestinal , Oryza , Pirazóis , ortoaminobenzoatos , Animais , Astacoidea/genética , RNA Ribossômico 16S , Estresse Oxidativo
3.
Environ Sci Pollut Res Int ; 31(8): 11591-11604, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38221557

RESUMO

Since Cd(II) and As(III) have extremely opposite chemical characteristics, it is a huge challenging to simultaneously remove these two ions from aqueous solutions. Therefore, a novel iron sulfide-based porous biochar (FSB) was synthesized and used to evaluate its Cd(II) and As(III) removal performance and mechanisms. The characterization and batch experiments results indicated that FeS was successfully loaded on the surface of biochar and increased its adsorption sites. The iron sulfide-based porous biochar was very favorable for the removal of Cd(II) and As(III) in the weakly acidic environment. The maximum adsorption of Cd(II) and As(III) by FSB was 108.8 mg g-1 and 76.3 mg g-1, respectively, according to the Langmuir and Freundlich isothermal adsorption model, and the adsorption equilibrium time was 12 h and 4 h, respectively, according to the pseudo-second-order kinetic model. In the coexisting ion system, Cd(II) adsorption was suppressed by Ca2+, Mg2+, and humic acid, but enhanced by PO43- and As(III). As(III) adsorption was inhibited by PO43- and humic acid. Precipitation and complexation are the predominant adsorption mechanisms of Cd(II) and As(III), which contribute to the formation of Cd-O, Fe-O-Cd, As-O, Fe-O-As, ternary complex Cd-Fe-As, and stable compounds FeAsO4·2H2O and CdS. Therefore, The iron sulfide-based porous biochar can be an efficient and environmentally friendly candidate for the treatment of Cd(II) and As(III) co-polluted irrigation water.


Assuntos
Cádmio , Compostos Ferrosos , Poluentes Químicos da Água , Cádmio/análise , Porosidade , Substâncias Húmicas , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Adsorção , Água , Cinética
4.
Nanoscale ; 16(7): 3764, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295379

RESUMO

Correction for 'High-performance p-i-n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode' by Tian Sun et al., Nanoscale, 2023, 15, 7803-7811, https://doi.org/10.1039/D3NR00410D.

5.
Bioresour Technol ; 393: 130128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040313

RESUMO

Applications of post-denitrification processes are subjected to low reaction rates caused by a lack of carbon resources. To offer a solution for reaction rate promotion, this research found a pilot-scale anaerobic/aerobic/anoxic bioreactor treating 55-120 m3/d low-strength municipal wastewater for 273 days. A short hydraulic retention time (HRT, 5-6 h) and a high nitrogen removal rate (63.2 ± 9.3 g-N/m3·d) were achieved using HRT optimization. The effluent total nitrogen concentration was maintained at 5.8 ± 1.4 mg/L while operating at a high nitrogen loading rate of 86.2 ± 12.8 g-N/m3·d. The short aeration (1.25-1.5 h) minimized the Glycogen loss. The endogenous denitrification rate increased to above 1.0 mg/(g-VSS·h). The functional genus Ca. Competibacter enriched to 2.3 %, guaranteeing the efficient post-denitrification process. Dechloromonas rose to 1.1 %, aiding in the synchronous phosphorus removal. These findings offered fresh insights into AOA processes to achieve energy/cost-saving wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Esgotos , Desnitrificação , Anaerobiose , Nitrogênio , Reatores Biológicos , Fósforo , Nitrificação
6.
BMC Urol ; 23(1): 175, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37915008

RESUMO

INTRODUCTION: During the last decades, the advent of flexible ureteroscopic lithotripsy has revolutionized the management of upper urinary tract stones. We designed a patented tip-bendable ureteral access sheath to facilitate stone clearance. Our current study reported our initial experience of 224 cases. MATERIALS AND METHODS: The study is a descriptive, retrospective analysis. The initial 224 cases, operated consecutively by one surgeon during 16 months, were reviewed. The novel tip-bendable ureteral access sheath was applied in the procedure. Demographics, laboratory tests, and peri- and postoperative findings (operation duration, stone-free rate (SFR), utilization of flexible instruments and complications) were analyzed. RESUTLS: The median age of the patients was 56 years and the mean stones size was 2.3 ± 1.3 cm. There were 63 cases of upper ureteral stone, 93cases of renal stone and 68 cases of ureteral-renal stones. The mean operative time was 69.2 ± 65.2 min. The immediate stone-free rate was 76.8% and the 1 month post-operative stone-free rate was 97.3%. Most cases(95.5%)were success in single session. Two patient experienced post-operative fever. There was no unplanned readmission. The frequency of post-operative complications was estimated at 0.89% (Clavien I). CONCLUSION: Flexible ureteroscopic lithotripsy with tip-bendable ureteral access sheath is a safe and effective procedure, which can achieve excellent stone clearance.


Assuntos
Cálculos Renais , Litotripsia , Ureter , Cálculos Ureterais , Humanos , Pessoa de Meia-Idade , Ureteroscopia/métodos , Estudos Retrospectivos , Ureter/cirurgia , Cálculos Ureterais/cirurgia , Cálculos Ureterais/complicações , Litotripsia/métodos , Cálculos Renais/cirurgia , Cálculos Renais/complicações , Resultado do Tratamento
7.
J Am Chem Soc ; 145(40): 22079-22085, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37784238

RESUMO

Due to the enormous chemical and structural diversities and designable properties and functionalities, covalent organic frameworks (COFs) hold great promise as tailored materials for industrial applications in electronics, biology, and energy technologies. They were typically obtained as partially crystalline materials, although a few single-crystal three-dimensional (3D) COFs have been obtained recently with structures probed by diffraction techniques. However, it remains challenging to grow single-crystal COFs with controlled morphology and to elucidate the local structures of 3D COFs, imposing severe limitations on the applications and understanding of the local structure-property correlations. Herein, we develop a method for designed growth of five types of single crystalline flakes of 3D COFs with controlled morphology, front crystal facets, and defined edge structures as well as surface chemistry using surfactants that can be self-assembled into layered structures to confine crystal growth in water. The flakes enable direct observation of local structures including monomer units, pore structure, edge structure, grain boundary, and lattice distortion of 3D COFs as well as gradually curved surfaces in kinked but single crystalline 3D COFs with a resolution of up to ∼1.7 Å. In comparison with flakes of two-dimensional crystals, the synthesized flakes show much higher chemical, mechanical, and thermal stability.

8.
J Adv Res ; 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37353002

RESUMO

INTRODUCTION: Epidemiological evidences reveal that populations with psychological stress have an increased likelihood of respiratory viral infection involving influenza A virus (IAV) and SARS-CoV-2. OBJECTIVES: This study aims to explore the potential correlation between psychological stress and increased susceptibility to respiratory viral infections and how this may contribute to a more severe disease progression. METHODS: A chronic restraint stress (CRS) mouse model was used to infect IAV and estimate lung inflammation. Alveolar macrophages (AMs) were observed in the numbers, function and metabolic-epigenetic properties. To confirm the central importance of the gut microbiome in stress-exacerbated viral pneumonia, mice were conducted through microbiome depletion and gut microbiome transplantation. RESULTS: Stress exposure induced a decline in Lactobacillaceae abundance and hence γ-aminobutyric acid (GABA) level in mice. Microbial-derived GABA was released in the peripheral and sensed by AMs via GABAAR, leading to enhanced mitochondrial metabolism and α-ketoglutarate (αKG) generation. The metabolic intermediator in turn served as the cofactor for the epigenetic regulator Tet2 to catalyze DNA hydroxymethylation and promoted the PPARγ-centered gene program underpinning survival, self-renewing, and immunoregulation of AMs. Thus, we uncover an unappreciated GABA/Tet2/PPARγ regulatory circuitry initiated by the gut microbiome to instruct distant immune cells through a metabolic-epigenetic program. Accordingly, reconstitution with GABA-producing probiotics, adoptive transferring of GABA-conditioned AMs, or resumption of pulmonary αKG level remarkably improved AMs homeostasis and alleviated severe pneumonia in stressed mice. CONCLUSION: Together, our study identifies microbiome-derived tonic signaling tuned by psychological stress to imprint resident immune cells and defensive response in the lungs. Further studies are warranted to translate these findings, basically from murine models, into the individuals with psychiatric stress during respiratory viral infection.

9.
Inorg Chem ; 62(21): 8309-8314, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37187458

RESUMO

The selective capture of low-concentration CO2 from air or confined spaces remains a great challenge. In this study, various functional groups were introduced into UiO-66 to generate functionalized derivatives (UiO-66-R, R = NO2, NH2, OH, and CH3), aiming at significantly enhancing CO2 adsorption and separation efficiency. More significantly, UiO-66-NO2 and UiO-66-NH2 with high polarity exhibit exceptional CO2 affinity and optimal separation characteristics in mixed CO2/O2/N2 (1:21:78). In addition, the impressive stability of UiO-66-NO2 and UiO-66-NH2 endows them with excellent recycling stability. The effective adsorption and separation performances demonstrated by these two functional materials suggest their potential as promising physical adsorbents for capturing low-concentration CO2.

10.
Funct Integr Genomics ; 23(2): 175, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37221323

RESUMO

Coronavirus disease 2019 (COVID-19) has speedily increased mortality globally. Although they are risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), less is known about the common molecular mechanisms behind COVID-19, influenza virus A (IAV), and chronic obstructive pulmonary disease (COPD). This research used bioinformatics and systems biology to find possible medications for treating COVID-19, IAV, and COPD via identifying differentially expressed genes (DEGs) from gene expression datasets (GSE171110, GSE76925, GSE106986, and GSE185576). A total of 78 DEGs were subjected to functional enrichment, pathway analysis, protein-protein interaction (PPI) network construct, hub gene extraction, and other potentially relevant disorders. Then, DEGs were discovered in networks including transcription factor (TF)-gene connections, protein-drug interactions, and DEG-microRNA (miRNA) coregulatory networks by using NetworkAnalyst. The top 12 hub genes were MPO, MMP9, CD8A, HP, ELANE, CD5, CR2, PLA2G7, PIK3R1, SLAMF1, PEX3, and TNFRSF17. We found that 44 TFs-genes, as well as 118 miRNAs, are directly linked to hub genes. Additionally, we searched the Drug Signatures Database (DSigDB) and identified 10 drugs that could potentially treat COVID-19, IAV, and COPD. Therefore, we evaluated the top 12 hub genes that could be promising DEGs for targeted therapy for SARS-CoV-2 and identified several prospective medications that may benefit COPD patients with COVID-19 and IAV co-infection.


Assuntos
COVID-19 , Coinfecção , MicroRNAs , Orthomyxoviridae , Humanos , Estudos Prospectivos , SARS-CoV-2 , Biologia Computacional
11.
Nanoscale ; 15(17): 7803-7811, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37039736

RESUMO

Despite the impressive developments in perovskite optoelectronic devices, their long-term stability remains a major challenge. Chemical reactions and ion exchange at the metal/perovskite contact interface are two significant factors that lead to the failure of perovskite devices. To address this issue, a titanium nitride (TiN) layer is introduced as a robust corrosion-resistant coating between perovskite films and metal electrodes. By introducing TiN layer, a perovskite photodiode with dark current down to 3.25 × 10-11 A cm-2 is realized. Consequently, the TiN-based perovskite photodiode shows a specific detectivity of 1.21 × 1014 cm W-1 Hz1/2, which is approximately two orders of magnitude higher than that of the control device without a TiN layer. Under continuous illumination of a 520 nm green light for 576 000 cycles, the responsivity of the TiN-based photodetector remains at 94.27% of its initial value. The TiN-based photodetector exhibits superior stability under thermal stress. After aging at 85 °C for 572 h, the TiN-based photodetector retains 72% of its initial responsivity. Using the TiN-based photodiode, a perovskite image sensor containing 64 × 64 pixelated perovskite photodiodes is constructed over an amorphous silicon thin-film transistor (TFT) backplane. The perovskite image sensor exhibits real-time imaging capability and long-term stability for over 6 months. This study highlights the importance of using metallic nitrides to achieve high-performance and air-stable perovskite devices for optoelectronic applications.

12.
Nat Chem ; 15(6): 841-847, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37037913

RESUMO

A core feature of covalent organic frameworks (COFs) is crystallinity, but current crystallization processes rely substantially on trial and error, chemical intuition and large-scale screening, which typically require harsh conditions and low levels of supersaturation, hampering the controlled synthesis of single-crystal COFs, particularly on large scales. Here we report a strategy to produce single-crystal imine-linked COFs in aqueous solutions under ambient conditions using amphiphilic amino-acid derivatives with long hydrophobic chains. We propose that these amphiphilic molecules self-assemble into micelles that serve as dynamic barriers to separate monomers in aqueous solution (nodes) and hydrophobic compartments of the micelles (linkers), thereby regulating the polymerization and crystallization processes. Disordered polyimines were obtained in the micelle, which were then converted into crystals in a step-by-step fashion. Five different three-dimensional COFs and a two-dimensional COF were obtained as single crystals on the gram scale, with yields of 92% and above.

13.
Pest Manag Sci ; 79(5): 1868-1875, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36654512

RESUMO

BACKGROUND: Cyantraniliprole, a second-generation diamide insecticide, was recently introduced in China, where the rice-crayfish integrated system (RCIS) is practiced to control rice pest infestations. The aim of this study was to investigate the residue behavior of cyantraniliprole in RCIS and its potential ecological effects on nontarget Procambarus clarkii in order to recommend safe pesticide application strategies. RESULTS: Cyantraniliprole dissipated in rice plants according to first-order kinetics, with an average half-life of 5.25 days and a dissipation rate of >95% over 28 days. The terminal cyantraniliprole residue levels in rice straw, paddy hull and brown rice were all within 0.2 mg kg-1 , which is the China-recommended maximum residue limit. The tissues of P. clarkii accumulated and distributed cyantraniliprole in the descending order gill > hepatopancreas > intestine > muscles. Procambarus clarkii exposed to cyantraniliprole exhibited a moderate decrease in weight gain, specific growth rate and condition factor compared to the control group. Exposure of P. clarkii to cyantraniliprole caused histopathological alterations to the hepatopancreas, but the alterations were not statistically significant in the 60 g ai ha-1 cyantraniliprole group when compared with the control group. CONCLUSION: We suggest that 10% cyantraniliprole oil dispersion be sprayed twice at an interval of 14 days and dosage of 60 g ai ha-1 during the growth stage of rice in RCIS. © 2023 Society of Chemical Industry.


Assuntos
Inseticidas , Oryza , Animais , Astacoidea , Inseticidas/farmacologia , ortoaminobenzoatos/farmacologia
14.
ACS Macro Lett ; 11(2): 243-250, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35574776

RESUMO

Organic electrochemical transistors (OECTs) are an emerging platform for bioelectronic applications. Significant effort has been placed in designing advanced polymers that simultaneously transport both charge and ions (i.e., macromolecules that are mixed conductors). However, the considerations for mixed organic conductors are often different from the established principles that are well-known in the solid-state organic electronics field; thus, the discovery of new OECT macromolecular systems is highly desired. Here, we demonstrate a new materials system by blending a radical polymer (i.e., a macromolecule with a nonconjugated backbone and with stable open-shell sites at its pendant group) with a frequently used conjugated polymer. Specifically, poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl) (PTEO) was blended with poly(3-hexylthiophene) (P3HT) to create thin films with distinct closed-shell and open-shell domains. Importantly, the sharp and unique oxidation-reduction (redox) potential associated with the radical moieties of the PTEO chain provided a distinct actuation feature to the blended films that modulated the ionic transport of the OECT devices. In turn, this led to controlled regulation of the doping of the P3HT phase in the composite film. By decoupling the ionic and electronic transport into two distinct phases and by using an ion transport phase with well-controlled redox activity, never-before-seen performance for a P3HT-based OECT was observed. That is, at loadings as low as 5% PTEO (by weight) OECTs achieved figure-of-merit (i.e., µC*) values >150 F V-1 cm-1 s-1, which place the performance on the same order as state-of-the-art conjugated polymers despite the relatively common conjugated macromolecular moiety implemented. As such, this effort presents a design platform by which to readily create a tailored OECT response through strategic macromolecular selection and polymer processing.


Assuntos
Polímeros , Transistores Eletrônicos , Íons , Polímeros/química
15.
Theranostics ; 12(6): 2928-2947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401830

RESUMO

Rationale: Aberrant activation of macrophages with mitochondria dismiss was proved to be associated with pathogenesis of ALI (acute lung injury). Exosomes from adipose-derived mesenchymal stem cells (AdMSC-Exos) have been distinguished by their low immunogenicity, lack of tumorigenicity, and high clinical safety, but their role in treating ALI and the mechanism involved need to be defined. In this study, we sought to investigate whether the mitochondrial donation from AdMSC-Exos provides profound protection against LPS-induced ALI in mice, accompanied by improvement of macrophage mitochondrial function. Methods: C57BL/6 mice were orotracheally instilled with LPS (1 mg/kg). AdMSC-Exos were administered via the tail vein 4 h after LPS inhalation. Flow cytometry, H&E, Quantitative Real-Time PCR, immunofluorescence (IF), confocal microscopy imaging was conducted to investigate lung tissue inflammation and macrophage mitochondrial function. And further observe the transfer of exosomes and the effect on mitochondrial function of MH-S cells through in vitro experiments. Results: AdMSC-Exos can transfer the stem cell-derived mitochondria components to alveolar macrophages in a dose-dependent manner. Likely through complementing the damaged mitochondria, AdMSC-Exos exhibited the ability to elevate the level of mtDNA, mitochondrial membrane potential (MMP), OXPHOS activity and ATP generation, while reliving mROS stress in LPS-challenged macrophages. Restoring mitochondrial integrity via AdMSC-Exos treatment enabled macrophages shifting to anti-inflammatory phenotype, as featured with the down-regulation of IL-1ß, TNF-α and iNOS secretion and increase in production of anti-inflammatory cytokines IL-10 and Arg-1. As we depleted alveolar macrophages using clodronate liposomes, the protective role for AdMSC-Exos was largely abrogated. Conclusions: AdMSC-Exos can effectively donate mitochondria component improved macrophages mitochondrial integrity and oxidative phosphorylation level, leading to the resumption of metabolic and immune homeostasis of airway macrophages and mitigating lung inflammatory pathology.


Assuntos
Lesão Pulmonar Aguda , Exossomos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/terapia , Animais , Exossomos/metabolismo , Homeostase , Lipopolissacarídeos/metabolismo , Macrófagos Alveolares , Camundongos , Camundongos Endogâmicos C57BL
16.
Aging Cell ; 21(4): e13594, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35313074

RESUMO

Disproportionately high incidence and mortality of respiratory infection such as influenza A virus (IAV) and SARS-CoV-2 have been evidenced in the elderly, but the role and the mechanism of age-associated immune deregulation in disease exacerbation are not well defined. Using a late generation of mice deficient in telomerase RNA (Terc-/- ), we herein demonstrated that aged mice were exquisitely susceptible to respiratory viral infection, with excessive inflammation and increased mortality. Furthermore, we identified the cGAS/STING pathway, which was essentially induced by the leaked mitochondrial DNA, as a biologically relevant mechanism contributing to exaggerated inflammation in Terc-/- mice following viral infection. Innate immune cells, mainly, macrophages with shortened telomeres, exhibited hallmarks of cellular senescence, mitochondrial distress, and aberrant activation of STING and NLRP3 inflammasome pathways, which predisposed mice to severe viral pneumonia during commonly mild infections. Application of STING inhibitor and, more importantly, senolytic agent, reduced the burden of stressed macrophages, improved mitochondrial integrity, and suppressed STING activation, thereby conferring the protection for Terc-/- mice against respiratory infection. Together, the findings expand our understanding of innate immune senescence and reveal the potential of the senolytics as a promising treatment to alleviate the symptom of viral pneumonia, particularly for the older population.


Assuntos
COVID-19 , Imunidade Inata , Animais , Inflamação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , SARS-CoV-2 , Transdução de Sinais , Telômero/metabolismo
17.
BMC Complement Med Ther ; 22(1): 36, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123452

RESUMO

BACKGROUND: Abelmoschus manihot (L.) Medicus (AM) is a medicinal plant with various biological activities, including anti-inflammatory, antioxidant, antiviral and immunomodulatory. Previous studies have identified total flavones as the primary bioactive ingredient of AM (termed TFA). However, its role and mechanism in counteracting Influenza A virus (IAV) infection are yet to be explored. Therefore, the study aims to study the antiviral and anti-inflammatory effects of TFA on IAV in vitro and in vivo. METHODS: A network pharmacology-based approach was applied to identify the antiviral mechanism of TFA against IAV. For the mechanism validation, the cytopathic effect reduction assay evaluated the antiviral activity of TFA in vitro. Meanwhile, the mice were intranasally infected with IAV to induce lung infection. The antiviral effect of TFA was observed in vivo. Further investigation whether the reprogramming microbiome in the TFA treatment group affected antiviral, we conducted a microbial-transfer study with co-housing experiments. RESULTS: By applying the network pharmacology-based methods (PPI, GO, and KEGG), we identified 167 potential targets of TFA action, among which 62 targets were related to IAV pathogenesis. A core network containing the pro-inflammatory TNFα, IL-6, IL-1ß, MAPKs, and RIG-I receptor signaling pathway was further confirmed as the crucial targets for anti-influenza efficacy of TFA. We demonstrate that TFA provided profound protection against pulmonary IAV infection, which alleviated inflammatory responses, decreased MAPK signaling pathway and expedited viral eradiation. CONCLUSIONS: Our study unveils a pivotal role for TFA in controlling viral infection and dampening pathology, making it a promising strategy for treating IAV-induced pneumonia.


Assuntos
Abelmoschus , Flavonas , Vírus da Influenza A , Pneumonia , Animais , Flavonas/farmacologia , Camundongos , Farmacologia em Rede
18.
J Am Chem Soc ; 144(7): 3233-3241, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35147035

RESUMO

It has been a longstanding challenge to rationally synthesize thin films of organic two-dimensional (2D) crystals with large single-crystalline domains. Here, we present a general strategy for the creation of 2D crystals of covalent organic frameworks (COFs) on the water surface, assisted by a charged polymer. The morphology of the preorganized monomers underneath the charged polymer on the water surface and their diffusion were crucial for the formation of the organic 2D crystals. Thin films of 2D COFs with an average single-crystalline domain size of around 3.57 ± 2.57 µm2 have been achieved, and their lattice structure, molecular structure, and grain boundaries were identified with a resolution down to 3 Å. The swing of chain segments and lattice distortion were revealed as key factors in compensating for the misorientation between adjacent grains and facilitating error corrections at the grain boundaries, giving rise to larger single-crystalline domains. The generality of the synthesis method was further proved with three additional 2D COFs. The oriented single-crystalline domains and clear grain boundaries render the films as model materials to study the dependence of the vertical conductivity of organic 2D crystals on domain sizes and chemical structures, and significant grain boundary effects were illustrated. This study presents a breakthrough in the controlled synthesis of organic 2D crystals with structural control at the molecular level. We envisage that this work will inspire further investigation into the microstructure-intrinsic property correlation of 2D COFs and boost their application in electronics.

19.
J Exp Bot ; 73(5): 1668-1682, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34893804

RESUMO

Loquat fruit are susceptible to chilling injuries induced by postharvest storage at low temperature. The major symptoms are increased lignin content and flesh firmness, which cause a leathery texture. Pretreatment with methyl jasmonate (MeJA) can alleviate this low-temperature-induced lignification, but the mechanism is not understood. In this study, we characterized a novel class III peroxidase, EjPRX12, and studied its relationship to lignification. Transcript levels of EjPRX12 were attenuated following MeJA pretreatment, consistent with the reduced lignin content in fruit. In vitro enzyme activity assay indicated that EjPRX12 polymerized sinapyl alcohol, and overexpression of EjPRX12 in Arabidopsis promoted lignin accumulation, indicating that it plays a functional role in lignin polymerization. We also identified an HD-ZIP transcription factor, EjHB1, repressed by MeJA pretreatment, which directly bound to and significantly activated the EjPRX12 promoter. Overexpression of EjHB1 in Arabidopsis promoted lignin accumulation with induced expression of lignin-related genes, especially AtPRX64. Furthermore, a JAZ-interacting repressor, EjbHLH14, was characterized, and it is proposed that MeJA pretreatment caused EjbHLH14 to be released to repress the expression of EjHB1. These results identified a novel regulatory pathway involving EjbHLH14-EjHB1-EjPRX12 and revealed the molecular mechanism whereby MeJA alleviated lignification of loquat fruit at low temperature.


Assuntos
Eriobotrya , Acetatos , Ciclopentanos , Eriobotrya/genética , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Oxilipinas , Extratos Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Light Sci Appl ; 10(1): 199, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561417

RESUMO

There is demand for scaling up 3D printing throughput, especially for the multi-photon 3D printing process that provides sub-micrometer structuring capabilities required in diverse fields. In this work, high-speed projection multi-photon printing is combined with spatiotemporal focusing for fabrication of 3D structures in a rapid, layer-by-layer, and continuous manner. Spatiotemporal focusing confines printing to thin layers, thereby achieving print thicknesses on the micron and sub-micron scale. Through projection of dynamically varying patterns with no pause between patterns, a continuous fabrication process is established. A numerical model for computing spatiotemporal focusing and imaging is also presented which is verified by optical imaging and printing results. Complex 3D structures with smooth features are fabricated, with millimeter scale printing realized at a rate above 10-3 mm3 s-1. This method is further scalable, indicating its potential to make fabrications of 3D structures with micro/nanoscale features in a practical time scale a reality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...